3D and standards for virtual cities
Towards an automatic construction of digital cities based on standards

Standard in Action workshop 2012
Toulouse- France

Gilles Gesquière
Gilles.Gesquiere@lsis.org
3D and standards for virtual cities

- Introduction
- Interoperability
- Data infrastructures
- Conclusion
Introduction

• Gilles Gesquière
 – Assistant professor,
 • Aix- Marseille University/ LSIS Lab (France)
 • 200 researchers
 – Research area
 • Geometric modeling,
 • Data exchange
 – Working on AFNOR (ISO TC/211 mirror committee)
 – Involved on several works in OGC
 • CityGML, SLD/ SE, W3DS, WVS ...
Introduction

My presentation is focused on 3D modeling of urban data

- Land management becomes more and more complex
- Urban or suburban modeling require more concerted use of data from various sources
 - CAD (1), GIS, BIM (2), ...
- Aggregating data permits to enhance
 - land management
 - understanding of data
 - Providing a dataset for simulations of physical phenomena
- Exchanging data leads to interoperability

In this presentation, I will make a quick overview of useful standards and propose two examples developed in my team

(1) Computer Aided Design
(2) Building Information Modeling
Introduction

• In first application, 3D visualization was used
 – Decision help for city planning
Introduction

- Using data to simulate physical phenomena
 - Making simulation in large scale

Fire propagation model

Forest fire consequences on a terrain let rough (up) and brush-cleared (down)
Introduction

• Using data to simulate physical phenomena
 – Making simulation in large scale
 • In different scales
Several interactions with models
Introduction

- Mixing results of different models (traffic/pollution)

- GIS and 3D data

- Traffic simulation (2D)

- Pollution propagation (3D)

- Simulation of Wind, rain, ...

Courtesy of Terra Magna
3D and standards for virtual cities

• Introduction
• Interoperability
• Data infrastructures
• Conclusion
Providing interoperable data

- Interoperability may be defined as “the ability of two or more systems or components to exchange information and to use the information that has been exchanged
- standardization is the most efficient and global solution to interoperability problems
- Several organizations, industry consortia and communities are involved in standards development activities related to urban matters:
 - ISO TC/211
 - Open Geospatial Consortium (OGC)
 - AFNOR (France)
 - 3D: Web3D consortium, BuildingSMART
 - CAD: Open Design Alliance
 - Standards dedicated to graphic technology: Khronos group
Encoding geospatial information

• **ISO TC 211** :
 – ISO 19107: geometric modeling and topology, 2D / 3D
 – ISO 19108: temporal models
 – ISO 19125-1: Simple Feature access + **Partie 2 (SQL)**
 – ISO 19123: « coverage »
 – ISO 19136: OGC standard **GML 3.2.1 ↔ data format for 2D and 3D**

• Develop application schemas by using components defined in abstracts standards
• Standards for 3D data
 – Provided by CAD domain (STEP ISO 10303, IGES)
 – For building with the IFC standard (ISO/PAS 16739).
Urban modelisation **CityGML** (OGC)

- **Thematic modeling**: building, transport network, hydrography, vegetation, street furnitures, textures...

- **Multi-scale management**
 - Regional model
 - LOD 0 – 2.5d Digital Terrain Model
 - City/ Site model
 - LOD1: « block model » without roof structure
 - LOD2: Explicit roof structure
 - LOD3: Detailed architectural model
 - Interior model
 - LOD4: « walkable » architectural models (in relation with IFC)

- **2D (surfaces) and 3D (solids) with texture**
Urban modelisation **CityGML** (OGC)

- **External references: Objects may**
 - Refer to their original data sources
 - Refer to other external data sources containing additional data

- **Application Domain extension**
 - Specific applications need extra information
 - Environmental simulations,
 - Utility networks
 - ...
 - Types of domain extension
 - Extend existing cityGML feature types
 - Extra spatial/non spatial attributes
 - Extra relations/associations
 - Definition of new feature types
 - Preferably based on cityGML base class CityObject
 - Each ADE requires its own XML schema definition
3D and standards for virtual cities

- Introduction
- Interoperability
- Data infrastructures
- Conclusion
Examples of applications

• 3D PIE
 – Preparing 2D/ 3D data for a client-server visualization

• SIMFOR
 – Preparing an operational theatre for training systems
3D PIE Example

• Context
 – In the 3D Portrayal Interoperability Experiment (OGC, 2011-2012)
 – Client-server environment
 – Compatibility with client and network capacity
 ⇒ Level of detail management
 – 3D visualization without any plugins

• Use case: Paris dataset of IGN(*)
 – Available as 446 tiles of 500 x 500 m² (i.e. around 100km²).
 – Total size: around 150 Go (zip files)
 – CityGML LOD 2
 – Model components: buildings

(*) www.ign.fr
Environment Editor

- Data aggregation
- Using processes to modify data
- Export Data to dedicated applications

Chambelland JC, Gesquière G, « Complex Virtual Urban Environment Modeling from CityGML Data and OGC web services: Application to the SIMFOR Project », SPIE, San Francisco, 01/2012

Create and manage 3D data

• Our environment editor
Data aggregation

- IGN Data(*)
 - Orthophoto (raster)
 - BD Alti (DTM)
 - BD Topo (roads, building footprints, ...)
 - Bati 3D (CityGML files)
- OGC Standards (WFS, WMS, CityGML, ...)
- Open Street map
Simplification/ Generalization (1)

• Creating missing LOD
Simplification/ Generalization (2)

- LOD 1 creation
- Simplification/ generalization
 - For buildings (with modified Douglas-Peucker Algorithm)
Simplification/ Generalization (3)

- Using Heuristics
 - Roof, front creation
 - Generation of generic textures
Creating level of abstractions (LOA)

- District creation

Mao Bo et al, A Framework for generalization of 3D City Models Based on CityGML and X3D, 2009
Building and terrain tiling

- Each layer is decomposed into tiles for indexation
Pyramidal representation

- LOA + DTM
- LOD 1 + DTM
- LOD 2 + CityGML terrain

500 m x 500 m (with district and a simplified DTM)
250 m x 250 m (with LOD 1 and a simplified DTM)
125 m x 125 m (with LOD 2 and the DTM provided in the cityGML files).
Data fusion

- Agglomerate data provided by different sources
Export for dedicated applications
Data exchange

Server (MapFaces) → Internet → Client

- MapContext
- Servlet
- Listener on .w3go
- Get Request
- JSON
- WebGL
- Render + Display

Introduction
Interoperability
Data infrastructures
Conclusion

http://mapfaces.codehaus.org/
THREE.js https://github.com/mrdoob/three.js/
Demonstration

- WebGL visualization in the OGC 3D portrayal experiment
Demonstration

• SIMFOR : « Serious game »
• Training system for risk management
Demonstration
3D and standards for virtual cities

- Introduction
- Interoperability
- Data infrastructures
- Conclusion
Conclusion

• Sharing and exchanging 2D and 3D data defined in different scales (coupled with semantic informations) is an important goal
 – Visualization geo data
 – Exchanging data between simulation models
 – Preparing an environment and a scenario for a training system

• Data interoperability is necessary
 => Important to use standard focused on geographic informations

• For instance, we may use
 – Data access WFS, WCS, SOS
 – Visualization service in 2D : WMS / WMTS
 – Visualization and portrayal service : emerging standards likes for example W3DS
Future works

• Using more standards to create in an automatic ways other set of elements like roads, trees, ...
• Complete real data with procedural methods to add details
• Extend generalization processes to reach the virtual globe level
• Following the standards evolution
 – Modification of
 • CityGML 2.0
 • ISO 19107
 – Creation of W3DS/ WVS